Erratum to: Real-time transient stability status prediction using cost-sensitive extreme learning machine
نویسندگان
چکیده
منابع مشابه
Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملApplying Cost-Sensitive Extreme Learning Machine and Dissimilarity Integration to Gene Expression Data Classification
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm a...
متن کاملBankruptcy prediction using Extreme Learning Machine and financial expertise
Bankruptcy prediction has been widely studied as a binary classification problem using financial ratios methodologies. In this paper, Leave-One-Out-Incremental Extreme Learning Machine (LOO-IELM) is explored for this task. LOO-IELM operates in an incremental way to avoid inefficient and unnecessary calculations and stops automatically with the neurons of which the number is unknown. Moreover, C...
متن کاملDynamic Cost-sensitive Ensemble Classification based on Extreme Learning Machine for Mining Imbalanced Massive Data Streams
In order to lower the classification cost and improve the performance of the classifier, this paper proposes the approach of the dynamic cost-sensitive ensemble classification based on extreme learning machine for imbalanced massive data streams (DCECIMDS). Firstly, this paper gives the method of concept drifts detection by extracting the attributive characters of imbalanced massive data stream...
متن کاملAn Extreme Learning Machine Approach to Predicting Near Chaotic HCCI Combustion Phasing in Real-Time
Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion phasing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, combustion deposits, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2015
ISSN: 0941-0643,1433-3058
DOI: 10.1007/s00521-015-1926-8